随时获取数据流的中位数

题目

有一个源源不断往外吐出整数的数据流,假设你有足够的空间来保存吐出的数。请设计一个方法,这个方法可以随时取出之前吐出所有数的中位数

要求

  1. 如果已经保存了吐出的N个数,那么任意时刻将一个新数加入的过程,其时间复杂度不超过O(logN)
  2. 取得中位数的过程,时间复杂度为O(1)

思路

建立一个大根堆,一个小根堆。每次来的一个数,和大根堆的堆顶比较,如果小于大根堆的堆顶,就加入大根堆;如果大于大根堆的堆顶,就加入小根堆

同时还要满足这两个堆中的元素个数之差不能超过2(即<2)。例如大根堆中的元素现在有3个,小根堆中的元素有1个,此时就需要把大根堆的堆顶弹出,放入小根堆中;反之也一样。注意:每次往堆中加入数的同时,也要调整堆的结构

如果吐出的数据个数为偶数,则中位数是两个堆的堆顶相加除以2;为奇数,中位数是元素个数较多的那个堆的堆顶

往堆里加入一个数的时间复杂度是O(logN),取出中位数的时间复杂度是O(1),满足题目要求

代码

import java.util.Comparator;
import java.util.PriorityQueue;

public class GetMedian {

	public static class MinHeapComparator implements Comparator<Integer> {

		@Override
		public int compare(Integer a, Integer b) {
			return a > b ? 1 : -1;
		}
	}

	public static class MaxHeapComparator implements Comparator<Integer> {

		@Override
		public int compare(Integer a, Integer b) {
			return b > a ? 1 : -1;
		}
	}

	public static void main(String[] args) {
		int[] arr = { 8, 3, 4, 6, 9, 7, 1 }; // 1 3 4 6 7 8 9
		double median = getMedian(arr);
		System.out.println(median);
	}

	private static double getMedian(int[] arr) {
		PriorityQueue<Integer> big = new PriorityQueue<Integer>(new MaxHeapComparator());
		PriorityQueue<Integer> small = new PriorityQueue<Integer>(new MinHeapComparator());
		for (int i = 0; i < arr.length; i++) {
			int cur = arr[i];
			if (big.isEmpty() || cur < big.peek())
				big.add(cur);
			else
				small.add(cur);
			if (big.size() - small.size() >= 2)
				small.add(big.poll());
			else if (small.size() - big.size() >= 2)
				big.add(small.poll());
		}
		if (arr.length % 2 == 0)
			return ((double) (big.peek() + small.peek()) / 2);
		else
			return big.size() > small.size() ? big.peek() : small.peek();
	}
}
相关推荐
©️2020 CSDN 皮肤主题: Age of Ai 设计师:meimeiellie 返回首页
实付 9.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值